LIDAR-Generated Digital Elevation Models for Hazard Detection

Po-Ting Chen, Siddarth Kaki, A. Miguel San Martin, David Skulsky, Anup Katake, and Nikolas Trawny

Presented by Po-Ting Chen

Feb. 3 2019

Overview

- Key Features
- Background
- LIDAR Model and DEM
- Simulation Examples

Key Features

- Modular geometric LIDAR models
- Integration with a dynamics simulator to model LIDAR measurements on moving platforms
- Modeling of measurement noises and state knowledge errors in DEM construction
- Develop tools to evaluate the LIDAR-generated DEM against the Europa Lander Mission Concept requirements

Deorbit Descent Landing Phases

The Hazard Detection phase relies on a LIDAR-generated DEM

A. K. Zimmer, E. D. Skulsky, A. M. San Martin, G. Singh, N. Trawny, T. P. Kulkarni, and M. E. Greco, "Landing on Europa: Key Challenges and Architecture Concept," 29th AAS/AIAA Space Flight Mechanics Meeting, Ka'anapali, HI, January 13-17, 2019.

LIDAR Model

- Developed as a software module for the DSENDS simulation architecture
- The LIDAR model consists of several individual modules. Each module can be replaced or adjusted to simulate a particular LIDAR configuration

Coordinate System

- Use ray-tracing and ray interception techniques to determine the true range from LIDAR to terrain
- Use navigation state knowledge to transform ^Ly to ^Ds for DEM construction

$$\begin{bmatrix} {}^{D}\boldsymbol{s} \\ 1 \end{bmatrix} = {}^{D}_{L}H \begin{bmatrix} {}^{L}\boldsymbol{y} \\ 1 \end{bmatrix}, \quad {}^{D}\boldsymbol{s} = \begin{bmatrix} x & y & z \end{bmatrix}^{T}$$

Parameters of the LIDAR Model

- Detector geometry and scanning mechanism
 - Number of pixels
 - Field-of-view
 - Scanning pattern
- Measurement noise model
 - Range noise
 - Range bias
 - Pixel dropout
 - Dead pixel
- Navigation state knowledge error model
 - Deterministic error, ${}^{D}\tilde{\boldsymbol{p}}=\boldsymbol{a}_{p}+\boldsymbol{a}_{v}(t-t_{0})$
 - Position bias, velocity error, angular bias, and angular rate error
 - ullet Add errors in lander body frame and DEM frame transformation, ${}^{\!D}_{L}H$

DEM Construction

Based on the weighted average of all measurements within a bin

$$\hat{Z}_{ij} = \sum_{k=1}^N w_k \hat{z}_k, \quad w_k = \frac{\breve{w}_k}{\sum\limits_{k=1}^N \breve{w}_k}, \quad \breve{w}_k = (1 - q_k)(1 - p_k).$$

DEM Requirements

Coverage

- The number of invalid pixels cannot exceed 1% of the mapped region.
- Following the 8-connected rule, the number of connected invalid pixels cannot exceed 10 pixels.
- The maximum distance from an invalid pixel to the nearest valid pixel cannot exceed 1 pixel.

Accuracy

- The elevation error of all valid pixels over the lander footprint shall not exceed 5 cm (95%ile) over the entire mapped region.
- The horizontal error of all valid pixels over the lander footprint shall not exceed 5 cm (95%ile) over the entire mapped region.
- The mean horizontal error over a lander footprint shall not exceed 1 m for 95% of the entire map.

DEM Evaluation Metrics

Coordinate errors

$$e_{X,ij} = X_{ij} - \hat{X}_{ij}, \quad e_{Y,ij} = Y_{ij} - \hat{Y}_{ij}, \quad e_{Z,ij} = Z_{ij} - \hat{Z}_{ij}$$

Absolute error metrics

$$\check{e}_{X,ij} = mean(e_{X,lk}), \quad \check{e}_{Y,ij} = mean(e_{Y,lk}), \quad \check{e}_{Z,ij} = mean(e_{Z,lk})$$

- The I and k indices are evaluated over the lander footprint
- Relative error metrics

$$ilde{e}_{X,ij} = Q_q(|e_{X,lk} - reve{e}_{X,ij}|), \quad ilde{e}_{Y,ij} = Q_q(|e_{Y,lk} - reve{e}_{Y,ij}|),$$
 $ilde{e}_{Z,ij} = Q_q(|e_{Z,lk} - reve{e}_{Z,ij}|)$

Simulation Setup

- Vertical descent in Europa gravity from 500 m altitude with constant vertical velocity of -23 m/s
- Scanning mechanism is a fast steering mirror following a line-search pattern
- LIDAR scanning time is 2 seconds at 20 kHz rate
- DEM resolution is 5 cm
- 2 Examples
 - Artificial DEM with primitives
 - No measurement or navigation state knowledge errors
 - Europa DEM
 - 5 cm range noise (3σ)
 - Velocity bias errors, [0.3, 0.3, 0.7] m/s in X, Y, and Z directions

Line-Search Scanning Pattern

Example 1: DEM

 True terrain is a plane with 10 circular cones (10 m height and 3 m radius)

Example 1: Evaluation

- Horizontal errors are due to measurement sorting
- Elevation error is due to large elevation change over a small area (quantization error)

Example 2: DEM

True DEM is an interpolation of a 12.5 m resolution Europa DEM

Example 2: Evaluation

- The navigation error is captured by the absolute error metrics
- The range measurement noise is captured by the relative elevation error metric (Z-direction)

Future Work

- Use this simulation to perform trade studies
 - Detector geometry
 - LIDAR scanning mechanisms and patterns
 - Error model parameters
 - DEM construction methods
 - Ground terrain
- Include additional LIDAR components
- Improve model fidelity
- Implement the covariance propagation equation to generate a DEM uncertainty map

jpl.nasa.gov